Departmental Bulletin Paper Existence Conditions and the Number of Solutions in Positive Integers (x, y) on an Equation a^x − b^y = 2

小鉢, 暢夫

7 ( 1 )  , pp.73 - 79 , 2016-03 , 独立行政法人国立高等専門学校機構 熊本高等専門学校
ISSN:1884-6734
NCID:07-11
Description
Let a, b∈N \ {1} . We show that an equation a^x − b^y = 2 has at most one solution in positive integers (x, y) . Espesially, when ab ≡1 mod 2 and gcd(a, b) =1 is satisfied, under certain six conditions, we show an equation a^x − b^y = 2 has at most one solution by using “minimal unit”. And, in its proof, we can find existence conditions of solutions.
Full-Text

https://kumamoto.repo.nii.ac.jp/?action=repository_action_common_download&item_id=94&item_no=1&attribute_id=22&file_no=1

Number of accesses :  

Other information