Technical Report Endogeneity and Panel Data in Growth Regressions: A Bayesian Model Averaging Approach


15-162015-10 , GRIPS Policy Research Center
Bayesian model averaging (BMA) has been successfully applied in the empirical growth literature as a way to overcome the sensitivity of results to different model specifications. In this paper, we develop a BMA technique to analyze panel data models with fixed effects that differ in the set of instruments, exogeneity restrictions, or the set of explanatory variables in the regression. The large model space that typically arises can be effectively analyzed using a Markov Chain Monte Carlo algorithm. We apply our technique to investigate the effect of foreign aid on per capita GDP growth. We show that BMA is an effective tool for the analysis of panel data growth regressions in cases where the number of models is large and results are sensitive to model assumptions.
JEL Classification Codes: O1, O2, O4, C30, C11

Number of accesses :  

Other information