Journal Article Selection of carbon beam therapy: biophysical models of carbon beam therapy

松藤, 成弘

59 ( S1 )  , pp.i58 - i62 , 2018-03 , oxford university press
Variation in the relative biological effectiveness (RBE) within the irradiation field of a carbon beam makes carbon-ion radiotherapy unique and advantageous in delivering the therapeutic dose to a deep-seated tumor, while sparing surrounding normal tissues. However, it is crucial to consider the RBE, not only in designing the dose distribution during treatment planning, but also in analyzing the clinical response retrospectively. At the National Institute of Radiological Sciences, the RBE model was established based on the response of human salivary gland cells. The response was originally handled with a linear–quadratic model, and later with a microdosimetric kinetic model. Retrospective analysis with a tumor-control probability model of non–small cell cancer treatment revealed a steep dose response in the tumor, and that the RBE of the tumor was adequately estimated using the model. A commonly used normal tissue complication probability model has not yet fully been accountable for the variable RBE of carbon ions; however, analysis of rectum injury after prostate cancer treatment suggested a highly serial-organ structure for the rectum, and a steep dose response similar to that observed for tumors.

Number of accesses :  

Other information