Journal Article Dose escalation study with respiratory-gated carbon-ion scanning radiotherapy using a simultaneous integrated boost for pancreatic cancer: simulation with four-dimensional computed tomography.

Kawashiro, Shohei  ,  Mori, Shinichiro  ,  Yamada, Shigeru  ,  Miki, Kazuhiro  ,  Nemoto, Kenji  ,  Tsuji, Hiroshi  ,  Kamada, Tadashi

90 ( 1072 )  , pp.20160790-1 - 20160790-7 , 2017-04
OBJECTIVE: Pancreatic cancer is a difficult to treat disease with a persistently high mortality rate. We evaluated dose distribution simulation with respiratory-gated carbon-ion pencil beam scanning (C-PBS) with a simultaneous integrated boost (SIB) to increase tumour dose, sparing organs at risk (OARs).METHODS: Using four-dimensional CT data of 12 patients, we delineated gross tumour volume and two clinical target volumes (CTVs). To consider beam range intrafractional uncertainty, we calculated field-specific target volumes, from which two planning target volumes (PTVs) were generated. PTV1 would receive a planned dose of 55.2 Gy [relative biological effectiveness (RBE)-weighted absorbed dose] in 12 fractions, and PTV2 would receive an SIB dose up to 67.2 Gy (RBE). Dose assessments were conducted with regard to the targets and OARs.RESULTS: CTV2 dose covering 95% of the volume (D95%) increased from 50.3 ± 5.1 Gy (RBE) to 62.5 ± 3.5 Gy (RBE) for a planned dose from 55.2 Gy (RBE) to 67.2 Gy (RBE). For 4 of 12 patients with a distance of ≥5 mm between the tumour and the gastrointestinal tract, CTV2 D95% was ≥95% of planned dose at all dose levels.CONCLUSION: We quantified dose escalation with respiratory-gated C-PBS using SIB for pancreatic cancer and revealed that OAR dose was not affected to the same degree as the tumour dose. Advances in knowledge: A simulation study on respiratory-gated C-PBS with SIB for pancreatic cancer was performed. The results indicated the feasibility of dose escalation for pancreatic cancer, which should be confirmed in clinical trials.

Number of accesses :  

Other information