Journal Article TAS-116, a Novel Hsp90 Inhibitor, Selectively Enhances Radiosensitivity of Human Cancer Cells to X-rays and Carbon Ion Radiation.

Lee, Younghyun  ,  Sunada, Shigeaki  ,  Hirakawa, Hirokazu  ,  Fujimori, Akira  ,  A Nickoloff, Jac  ,  Okayasu, Ryuichi

16 ( 1 )  , pp.16 - 24 , 2017-01
Hsp90 inhibitors have been investigated as cancer therapeutics in monotherapy and to augment radiotherapy; however, serious adverse effects of early-generation Hsp90 inhibitors limited their development. TAS-116 is a novel Hsp90 inhibitor with lower adverse effects than other Hsp90 inhibitors, and here, we investigated the radiosensitizing effects of TAS-116 in low linear energy transfer (LET) X-ray and high LET carbon ion-irradiated human cancer cells and mouse tumor xenografts. TAS-116 decreased cell survival of both X-ray and carbon ion-irradiated human cancer cell lines (HeLa and H1299 cells), and similar to other Hsp90 inhibitors, it did not affect radiosensitivity of noncancerous human fibroblasts. TAS-116 increased the number of radiation-induced γ-H2AX foci and delayed the repair of DNA double-strand breaks (DSB). TAS-116 reduced the expression of proteins that mediate repair of DSBs by homologous recombination (RAD51) and nonhomologous end joining (Ku, DNA-PKcs), and suppressed formation of RAD51 foci and phosphorylation/activation of DNA-PKcs. TAS-116 also decreased expression of the cdc25 cell-cycle progression marker, markedly increasing G2-M arrest. Combined treatment of mouse tumor xenografts with carbon ions and TAS-116 showed promising delay in tumor growth compared with either individual treatment. These results demonstrate that TAS-116 radiosensitizes human cancer cells to both X-rays and carbon ions by inhibiting the two major DSB repair pathways, and these effects were accompanied by marked cell-cycle arrest. The promising results of combination TAS-116 + carbon ion radiotherapy of tumor xenografts justify further exploration of TAS-116 as an adjunct to radiotherapy using low or high LET radiation. Mol Cancer Ther; 16(1); 16-24. ©2016 AACR.

Number of accesses :  

Other information