Conference Paper Synthetic generation of spatially high resolution extreme rainfall in Japan using Monte Carlo simulation with AMeDAS analyzed rainfall data sets

渡辺, 春樹  ,  Watanabe, Haruki  ,  井芹, 慶彦  ,  Iseri, Yoshihiko  ,  小泉, 晋也  ,  Koizumi, Shinya  ,  佐々木, 織江  ,  Sasaki, Orie  ,  吉川, 沙耶花  ,  Yoshikawa, Sayaka  ,  鼎, 信次郎  ,  Kanae, Shinjiro

Natural disasters caused by heavy rainfall occur every year in Japan. Effective countermeasures against such events are important. In 2015, a catastrophic flood occurred in Kinu river basin, which locates in the northern part of Kanto region. The remarkable feature of this flood event was not only in the intensity of rainfall but also in the spatial characteristics of heavy rainfall area. The flood was caused by continuous overlapping of heavy rainfall area over the Kinu river basin, suggesting consideration of spatial extent is quite important to assess impacts of heavy rainfall events. However, the spatial extent of heavy rainfall events cannot be properly measured through rainfall measurement by rain gauges at observation points. On the other hand, rainfall measurements by radar observations provide spatially and temporarily high resolution rainfall data which would be useful to catch the characteristics of heavy rainfall events. For long term effective countermeasure, extreme heavy rainfall scenario considering rainfall area and distribution is required. In this study, a new method for generating extreme heavy rainfall events using Monte Carlo Simulation has been developed in order to produce extreme heavy rainfall scenario. This study used AMeDAS analyzed precipitation data which is high resolution grid precipitation data made by Japan Meteorological Agency. Depth area duration (DAD) analysis has been conducted to extract extreme rainfall events in the past, considering time and spatial scale. In the Monte Carlo Simulation, extreme rainfall event is generated based on events extracted by DAD analysis. Extreme heavy rainfall events are generated in specific region in Japan and the types of generated extreme heavy rainfall events can be changed by varying the parameter. For application of this method, we focused on Kanto region in Japan. As a result, 3000 years rainfall data are generated. 100 -year probable rainfall and return period of flood in Kinu River Basin (2015) are obtained using generated data. We compared 100-year probable rainfall calculated by this method with other traditional method. New developed method enables us to generate extreme rainfall events considering time and spatial scale and produce extreme rainfall scenario.

Number of accesses :  

Other information