学術雑誌論文 Multipole modes of excitation in triaxially deformed superfluid nuclei

Washiyama, Kouhei  ,  Nakatsukasa, Takashi

96 ( 4 )  , p.41304 , 2017-10 , American Physical Society
ISSN:2469-9985
NII書誌ID(NCID):AA00773613
内容記述
Background: The five-dimensional quadrupole collective model based on energy density functionals (EDFs) has often been employed to treat long-range correlations associated with shape fluctuations in nuclei. Our goal is to derive the collective inertial functions in the collective Hamiltonian by the local quasiparticle random-phase approximation (QRPA) that correctly takes into account time-odd mean-field effects. Currently, a practical framework to perform the QRPA calculation with the modern EDFs on the (β,γ) deformation space is not available.Purpose: Toward this goal, we develop an efficient numerical method to perform the QRPA calculation on the (β,γ) deformation space based on the Skyrme EDF.Methods: We use the finite amplitude method (FAM) for the efficient calculation of QRPA strength functions for multipole external fields. We construct a computational code of FAM-QRPA in the three-dimensional Cartesian coordinate space to handle triaxially deformed superfluid nuclei.Results: We validate our new code by comparing our results with former QRPA calculations for axially symmetric nuclei. Isoscalar quadrupole strength functions in triaxial superfluid nuclei 110Ru and 190Pt are obtained within a reasonable computational cost.Conclusions: QRPA calculations for triaxially deformed superfluid nuclei based on the Skyrme EDF are achieved with the help of the FAM. This is an important step toward the microscopic calculation of collective inertial functions of the local QRPA.
本文を読む

https://tsukuba.repo.nii.ac.jp/?action=repository_action_common_download&item_id=44267&item_no=1&attribute_id=17&file_no=1

このアイテムのアクセス数:  回

その他の情報