Journal Article Measurement of the higher-order anisotropic flow coefficients for identified hadrons in Au + Au collisions at √sNN=200GeV

PHENIX Collaboration  ,  Miake, Y.  ,  Esumi, S.  ,  Chujo, T.

93 ( 5 )  , p.051902 , 2016-05 , American Physical Society
Measurements of the anisotropic flow coefficients v2{Ψ2},v3{Ψ3},v4{Ψ4}, and v4{Ψ2} for identified particles (π±,K±, and p+p¯) at midrapidity, obtained relative to the event planes Ψm at forward rapidities in Au + Au collisions at sNN−−−√=200GeV, are presented as a function of collision centrality and particle transverse momenta pT. The vn coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic n, a modified valence quark-number Nq scaling [plotting vn{Ψm}/(Nq)n/2 versus transverse kinetic energies (KET)/Nq] is observed to yield a single curve for all the measured particle species for a broad range of KET. A simultaneous blast-wave model fit to the observed vn{Ψm}(pT) coefficients and published particle spectra identifies radial flow anisotropies ρn{Ψm} and spatial eccentricities sn{Ψm} at freeze-out. These are generally smaller than the initial-state participant-plane geometric eccentricities ɛn{ΨPPm} as also observed in the final eccentricity from quantum interferometry measurements with respect to the event plane.

Number of accesses :  

Other information