学術雑誌論文 Second-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions

Akahira, Masafumi

68 ( 3 )  , pp.469 - 490 , 2016-06 , Springer
ISSN:0020-3157
NII書誌ID(NCID):AA00026236
内容記述
For a truncated exponential family of distributions with a natural parameter θ and a truncation parameter γ as a nuisance parameter, it is known that the maximum likelihood estimators (MLEs) θ^γML and θ^ML of θ for known γ and unknown γ, respectively, and the maximum conditional likelihood estimator θ^MCL of θ are asymptotically equivalent. In this paper, the stochastic expansions of θ^γML, θ^ML and θ^MCL are derived, and their second-order asymptotic variances are obtained. The second-order asymptotic loss of a bias-adjusted MLE θ^∗ML relative to θ^γML is also given, and θ^∗ML and θ^MCL are shown to be second-order asymptotically equivalent. Further, some examples are given.
本文を読む

https://tsukuba.repo.nii.ac.jp/?action=repository_action_common_download&item_id=38448&item_no=1&attribute_id=17&file_no=1

このアイテムのアクセス数:  回

その他の情報