
Power packet transferability via symbol propagation matrixPower packet transferability via symbol propagation matrix 
"/Nawata, Shinya/"Nawata, Shinya ,
"/Maki, Atsuto/"Maki, Atsuto ,
"/Hikihara, Takashi/"Hikihara, Takashi
474
(
2213
)
20180516 , The Royal Society
ISSN:13645021
Description
電力をパケット化しデジタルに処理する枠組みを構築 エネルギーと情報の統合に向けたアプローチ. 京都大学プレスリリース. 20180518.
A power packet is a unit of electric power composed of a power pulse and an information tag. In Shannon’s information theory, messages are represented by symbol sequences in a digitized manner. Referring to this formulation, we define symbols in power packetization as a minimum unit of power transferred by a tagged pulse. Here, power is digitized and quantized. In this paper, we consider packetized power in networks for a finite duration, giving symbols and their energies to the networks. A network structure is defined using a graph whose nodes represent routers, sources and destinations. First, we introduce the concept of a symbol propagation matrix (SPM) in which symbols are transferred at links during unit times. Packetized power is described as a network flow in a spatiotemporal structure. Then, we study the problem of selecting an SPM in terms of transferability, that is, the possibility to represent given energies at sources and destinations during the finite duration. To select an SPM, we consider a network flow problem of packetized power. The problem is formulated as an Mconvex submodular flow problem which is a solvable generalization of the minimum cost flow problem. Finally, through examples, we verify that this formulation provides reasonable packetized power.
FullText
http://repository.kulib.kyotou.ac.jp/dspace/bitstream/2433/231203/1/rspa.2017.0552.pdf