Journal Article Sequence-regulated copolymerization based on periodic covalent positioning of monomers along one-dimensional nanochannels

Mochizuki, Shuto  ,  Ogiwara, Naoki  ,  Takayanagi, Masayoshi  ,  Nagaoka, Masataka  ,  Kitagawa, Susumu  ,  Uemura, Takashi

92018-01-23 , Springer Nature
連結分子の並びを巧みに制御できる高分子合成法を開発 --DNAのように分子情報を転写--. 京都大学プレスリリース. 2018-01-24.
The design of monomer sequences in polymers has been a challenging research subject, especially in making vinyl copolymers by free-radical polymerization. Here, we report a strategy to obtain sequence-regulated vinyl copolymers, utilizing the periodic structure of a porous coordination polymer (PCP) as a template. Mixing of Cu2+ ion and styrene-3, 5-dicarboxylic acid (S) produces a PCP, [Cu(styrene-3, 5-dicarboxylate)] n , with the styryl groups periodically immobilized along the one-dimensional channels. After the introduction of acrylonitrile (A) into the host PCP, radical copolymerization between A and the immobilized S is performed inside the channel, followed by decomposing the PCP to isolate the resulting copolymer. The predominant repetitive SAAA sequence in the copolymer is confirmed by monomer composition, NMR spectroscopy and theoretical calculations. Copolymerization using methyl vinyl ketone also provides the same type of sequence-regulated copolymer, showing that this methodology has a versatility to control the copolymer sequence via transcription of PCP periodicity at the molecular level.

Number of accesses :  

Other information