Journal Article Tetrabutylammonium Salts of Aluminum(III) and Gallium(III) Phthalocyanine Radical Anions Bonded with Fluoren-9-olato(-) Anions and Indium(III) Phthalocyanine Bromide Radical Anions.

Konarev, Dmitri V  ,  Khasanov, Salavat S  ,  Ishikawa, Manabu  ,  Nakano, Yoshiaki  ,  Otsuka, Akihiro  ,  Yamochi, Hideki  ,  Saito, Gunzi  ,  Lyubovskaya, Rimma N

12 ( 8 )  , pp.910 - 919 , 2017-04-18 , Wiley-Blackwell
ISSN:1861-4728
Description
Reduction of aluminum(III), gallium(III), and indium(III) phthalocyanine chlorides by sodium fluorenone ketyl in the presence of tetrabutylammonium cations yielded crystalline salts of the type (Bu4 N(+) )2 [M(III) (HFl-O(-) )(Pc(.3-) )](.-) (Br(-) )⋅1.5 C6 H4 Cl2 [M=Al (1), Ga (2); HFl-O(-) =fluoren-9-olato(-) anion; Pc=phthalocyanine] and (Bu4 N(+) ) [In(III) Br(Pc(.3-) )](.-) ⋅0.875 C6 H4 Cl2 ⋅0.125 C6 H14 (3). The salts were found to contain Pc(.3-) radical anions with negatively charged phthalocyanine macrocycles, as evidenced by the presence of intense bands of Pc(.3-) in the near-IR region and a noticeable blueshift in both the Q and Soret bands of phthalocyanine. The metal(III) atoms coordinate HFl-O(-) anions in 1 and 2 with short Al-O and Ga-O bond lengths of 1.749(2) and 1.836(6) Å, respectively. The C-O bonds [1.402(3) and 1.391(11) Å in 1 and 2, respectively] in the HFl-O(-) anions are longer than the same bond in the fluorenone ketyl (1.27-1.31 Å). Salts 1-3 show effective magnetic moments of 1.72, 1.66, and 1.79 μB at 300 K, respectively, owing to the presence of unpaired S=1/2 spins on Pc(.3-) . These spins are coupled antiferromagnetically with Weiss temperatures of -22, -14, and -30 K for 1-3, respectively. Coupling can occur in the corrugated two-dimensional phthalocyanine layers of 1 and 2 with an exchange interaction of J/kB =-0.9 and -1.1 K, respectively, and in the π-stacking {[In(III) Br(Pc(.3-) )](.-) }2 dimers of 3 with an exchange interaction of J/kB =-10.8 K. The salts show intense electron paramagnetic resonance (EPR) signals attributed to Pc(.3-) . It was found that increasing the size of the central metal atom strongly broadened these EPR signals.
Full-Text

http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/224817/1/asia.201700138.pdf

Number of accesses :  

Other information