Journal Article Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS

Miyake, Takahito  ,  Nakamura, Saki  ,  Zhao, Meng  ,  So, Kanako  ,  Inoue, Keisuke  ,  Numata, Tomohiro  ,  Takahashi, Nobuaki  ,  Shirakawa, Hisashi  ,  Mori, Yasuo  ,  Nakagawa, Takayuki  ,  Kaneko, Shuji

72016-09-15 , Springer Nature
人はなぜ「冷たい」を「痛い」と感じるのか ―活性酸素と痛みセンサーTRPA1がカギを握る―. 京都大学プレスリリース. 2016-09-16.
Mammalian transient receptor potential ankyrin 1 (TRPA1) is a polymodal nociceptor that plays an important role in pain generation, but its role as a cold nociceptor is still controversial. Here, we propose that TRPA1 can sense noxious cold via transduction of reactive oxygen species (ROS) signalling. We show that inhibiting hydroxylation of a proline residue within the N-terminal ankyrin repeat of human TRPA1 by mutation or using a prolyl hydroxylase (PHD) inhibitor potentiates the cold sensitivity of TRPA1 in the presence of hydrogen peroxide. Inhibiting PHD in mice triggers mouse TRPA1 sensitization sufficiently to sense cold-evoked ROS, which causes cold hypersensitivity. Furthermore, this phenomenon underlies the acute cold hypersensitivity induced by the chemotherapeutic agent oxaliplatin or its metabolite oxalate. Thus, our findings provide evidence that blocking prolyl hydroxylation reveals TRPA1 sensitization to ROS, which enables TRPA1 to convert ROS signalling into cold sensitivity.

Number of accesses :  

Other information