Journal Article Preparatory body state before reacting to an opponent: Short-term joint torque fluctuation in real-time competitive sports

Fujii, Keisuke  ,  Yamashita, Daichi  ,  Kimura, Tetsuya  ,  Isaka, Tadao  ,  Kouzaki, Motoki

10 ( 5 ) 2015-05-29 , Public Library of Science
ISSN:1932-6203
Description
In a competitive sport, the outcome of a game is determined by an athlete's relationship with an unpredictable and uncontrolled opponent. We have previously analyzed the preparatory state of ground reaction forces (GRFs) dividing non-weighted and weighted states (i.e., vertical GRFs below and above 120% of body weight, respectively) in a competitive ballgame task and demonstrated that the non-weighted state prevented delay of the defensive step and promoted successful guarding. However, the associated kinetics of lower extremity joints during a competitive sports task remains unknown. The present study aims to investigate the kinetic characteristics of a real-time competitive sport before movement initiation. As a first kinetic study on a competitive sport, we initially compared the successful defensive kinetics with a relatively stable preparatory state and the choice-reaction sidestep as a control movement. Then, we investigated the kinetic cause of the outcome in a 1-on-1 dribble in terms of the preparatory states according to our previous study. The results demonstrated that in successful defensive motions in the non-weighted state guarding trial, the times required for the generation of hip abduction and three extension torques for the hip, knee, and ankle joints were significantly shortened compared with the choice-reaction sidestep, and hip abduction and hip extension torques were produced almost simultaneously. The sportspecific movement kinetics emerges only in a more-realistic interactive experimental setting. A comparison of the outcomes in the 1-on-1 dribble and preparatory GRF states showed that, in the non-weighted state, the defenders guarded successfully in 68.0%of the trials, and the defender's initiation time was earlier than that in the weighted state (39.1%). In terms of kinetics, the root mean squares of the derivative of hip abduction and three extension torques in the non-weighted state were smaller than those in the weighted state, irrespective of the outcome. These results indicate that the preparatory body state as explained by short-term joint torque fluctuations before the defensive step would help explain the performance in competitive sports, and will give insights into understanding human adaptive behavior in unpredicted and uncontrolled environments.
Full-Text

http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/214459/1/journal.pone.0128571.pdf

Number of accesses :  

Other information