Journal Article Preferential adsorption of cell adhesive proteins from complex media on self-assembled monolayers and its effect on subsequent cell adhesion.

Arima, Yusuke  ,  Iwata, Hiroo

26pp.72 - 81 , 2015-10-15 , Elsevier Ltd.
We examined the effect of surface chemistry on adsorption of fibronectin (Fn) and vitronectin (Vn) and subsequent cell adhesion, employing self-assembled monolayers (SAMs) of alkanethiols carrying terminal methyl (CH3), hydroxyl groups (OH), carboxylic acid (COOH), and amine (NH2). More Fn and Vn adsorbed to COOH- and NH2-SAMs than to CH3- and OH-SAMs from a mixture with bovine serum albumin (BSA) and from 2% fetal bovine serum. Adhesion of human umbilical vein endothelial cells (HUVECs) on CH3- and OH-SAMs preadsorbed with Fn and BSA decreased with decreasing adsorbed Fn; however, HUVECs adhered to COOH- and NH2-SAMs even in the presence of BSA at 1000-fold more than Fn in a mixture because of the preferential adsorption of Fn and/or displacement of preadsorbed BSA with Fn and Vn in a serum-containing medium. SAMs coated with a mixture of Vn and BSA exhibited adhesion of HUVECs regardless of surface functional groups. A well-organized focal adhesion complex and actin stress fibers were observed only for COOH- and NH2-SAMs when SAMs were preadsorbed with Vn and BSA. These results suggest that COOH- and NH2-SAMs allow for both cell adhesion and cell spreading because of the high density of cell-binding domains derived from adsorbed Vn.

Number of accesses :  

Other information