Journal Article Nanograting formation on metals in air with interfering femtosecond laser pulses

Miyazaki, Kenzo  ,  Miyaji, Godai  ,  Inoue, Toshishige

107 ( 7 ) 2015-08-17 , AIP Publishing
It is demonstrated that a homogeneous nanograting having the groove period much smaller than the laser wavelength (∼800 nm) can be fabricated on metals in air through ablation induced by interfering femtosecond laser pulses (100 fs at a repetition rate of 10 Hz). Morphological changes on stainless steel and Ti surfaces, observed with an increase in superimposed shots of the laser pulses at a low fluence, have shown that the nanograting is developed through bonding structure change at the interference fringes, plasmonic near-field ablation to create parallel grooves on the fringe, and subsequent excitation of surface plasmon polaritons to regulate the groove intervals at 1/3 or 1/4 of the fringe period over the whole irradiated area. Calculation for a model target having a thin oxide layer on the metal substrate reproduces well the observed groove periods and explains the mechanism for the nanograting formation.

Number of accesses :  

Other information