Journal Article Hydrothermal preparation of blue molybdenum bronze nanoribbons: structural changes in mother crystals, related to solid-state conversion and crystallite splitting to nanomorphology

Nishida, Takamasa  ,  Eda, Kazuo

20 ( 2 )  , p.27 , 2018-02 , Springer
ISSN:138807641572896X
Description
Hydrothermal syntheses of alkali-metal blue molybdenum bronze nanoribbons, which are expected to exhibit unique properties induced by a combined effect of extrinsic and intrinsic low-dimensionalities, from hydrated-alkali-metal molybdenum bronzes were investigated. Nanoribbons grown along the quasi-one-dimensional (1D) conductive direction of Cs0.3MoO3, which is difficult to prepare by the conventional methods, were first synthesized. The nanomorphology formation is achieved by a solid-state conversion (or crystallite splitting) and subsequent crystallite growth, and the structural changes of the starting material related to the conversion were first observed by powder X-ray diffraction and scanning transmission electron microscopy as a result of finely tuned reaction system and preparation conditions. The structural changes were analyzed by model simulations and were attributed to the structural modulations that were concerned with the intralayer packing disorder and with two-dimensional long-range ordered structure, formed in MoO3 sheets of the hydrated molybdenum bronze. Moreover, the modulations were related to displacement defects of the Mo-O framework units generated along the [100] direction in the hydrated molybdenum bronze. Then, it was suggested that the solid-state conversion into blue molybdenum bronze and the crystallite splitting to nanomorphology were initiated by the breaking of the Mo-O-Mo bonds at the defects.
Full-Text

http://www.lib.kobe-u.ac.jp/repository/90004655.pdf

Number of accesses :  

Other information