学術雑誌論文 DICHOTOMY OF GLOBAL CAPACITY DENSITY

Aikawa, Hiroaki  ,  Itoh, Tsubasa

143 ( 12 )  , pp.5381 - 5393 , 2015-12 , American Mathematical Society
ISSN:0002-9939
内容記述
Let 1 < p < infinity and let d mu(x) = w(x) dx be a p-admissible weight in R-n, n >= 2. By Cap(p, mu)(E, D) we denote the variational (p, mu)-capacity of condenser (E, D). We show a dichotomy of the global density with respect to Cap(p, mu). One of our results is as follows: Let lambda > 1 and let B(x, r) stand for the open ball with center at x and radius r. Then lim(r ->infinity) (inf(x is an element of Rn) Cap(p, mu)(E boolean AND B(x, r), B(x, lambda r))/Cap(p, mu)(B(x, r), B(x, lambda r))) is equal to either 0 or 1; the first case occurs if and only if inf(x is an element of Rn) Cap(p, mu)(E boolean AND B(x, r(0)), B(x, lambda r))/Cap(p, mu)(B(x, r), B(x, lambda r)) is identically equal to 0. This provides a sharp contrast between capacity and Lebesgue measure.
本文を読む

http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/60452/1/dgcd.pdf

このアイテムのアクセス数:  回

その他の情報