Journal Article Compositional Z: Confluence Proofs for Permutative Conversion

Nakazawa, Koji  ,  Fujita, Ken-etsu

104 ( 6 )  , pp.1205 - 1224 , 2016-12 , Springer
ISSN:0039-3215
Description
This paper gives new confluence proofs for several lambda calculi with permutation-like reduction, including lambda calculi corresponding to intuitionistic and classical natural deduction with disjunction and permutative conversions, and a lambda calculus with explicit substitutions. For lambda calculi with permutative conversion, naïve parallel reduction technique does not work, and (if we consider untyped terms, and hence we do not use strong normalization) traditional notion of residuals is required as Ando pointed out. This paper shows that the difficulties can be avoided by extending the technique proposed by Dehornoy and van Oostrom, called the Z theorem: existence of a mapping on terms with the Z property concludes the confluence. Since it is still hard to directly define a mapping with the Z property for the lambda calculi with permutative conversions, this paper extends the Z theorem to compositional functions, called compositional Z, and shows that we can adopt it to the calculi.
Full-Text

https://nagoya.repo.nii.ac.jp/?action=repository_action_common_download&item_id=23378&item_no=1&attribute_id=17&file_no=1

Number of accesses :  

Other information